OM 402UNI # 4 DIGIT PROGRAMMABLE UNIVERSAL INSTRUMENT DC VOLTMETER /AMMETER PROCESS MONITOR OHMMETER THERMOMETER FOR PT 100/500/1 000 THERMOMETER FOR NI 1 000 THERMOMETER FOR THERMOCOUPLES DISPLAYS FOR LIN. POTENTIOMETERS #### **SAFETY INSTRUCTIONS** Please, read the enclosed safety instructions carefully and observe them! These instruments should be safeguarded by isolated or common fuses (breakers)! For safety information the EN 61 010-1 + A2 standard must be observed. This instrument is not explosion-safe! #### **TECHNICAL DATA** Measuring instruments of the OM 402 series conform to the European regulation 89/336/EWG and the Ordinance 168/1997 Coll. The instruments are up to the following European standards: EN 55 022, class B EN 61000-4-2, -4, -5, -6, -8, -9, -10, -11 The instruments are applicable for unlimited use in agricultural and industrial areas. #### CONNECTION Supply of energy from the main line has to be isolated from the measuring leads. #### ORBIT MERRET, spol. s r.o. Vodnanska 675/30 198 00 Prague 9 Czech Republic Tel: +420 - 281 040 200 Fax: +420 - 281 040 299 e-mail: orbit@merret.cz www.orbit.merret.cz | 1. | Contents | | | | | | |------------|--|------------|--|-----|--|--| | 2. | Instrument description. | | | | | | | 3. | | | | | | | | 4. | Instrument setting | | | | | | | | Symbols used in the instructions. Setting the DP and the (-) sign | | | | | | | | | | | | | | | | | ol keys fu | | | | | | | | 0, 1 | ing items into "USER" menu | | | | | 5. | | | T" menu | | | | | | 5.0 | | ion "LIGHT" menu | | | | | | | | nput - Type "DC" | | | | | | | | nput - Type "PM" | | | | | | | | nput - Type "DU" | | | | | | | | nput - Type "RTD - Pt" | | | | | | | | nput - Type "RTD - Cu" | | | | | | | | nput - Type "RTD - Ni". | | | | | | | | nput - Type "T/C" | | | | | | | Setting L | | | | | | | | Setting | analog output | 3. | | | | | | Selectio | n of programming menu "LIGHT"/"PROFI" | . 3 | | | | | | Restorat | ion of manufacture setting | . 3 | | | | | | | ion - input range (DU). | | | | | | | | n of instrument menu language version | | | | | | | | new access password | | | | | | | | nt identification | | | | | 6. | Settin | | FI" menu | | | | | | 6.0 | Descript | ion of "PROFI" menu | 4 | | | | | 6.1 | "PROFI" | menu - INPUT | | | | | | | 6.1.1 | Resetting internal values | | | | | | | 6.1.2 | Setting measuring type, range, mode, rate, | | | | | | | 6.1.3 | Setting the Real Time | | | | | | | 6.1.4 | External input function selection. | | | | | | | 6.1.5 | Optional accessory functions of the keys. | 5 | | | | | 6.2 | | menu - CHANNEL | | | | | | | 6.2.1 | Setting measuring parameters (projection, filters, decimal point, description) | 5 | | | | | | 6.2.2 | Setting mathematic functions | | | | | | | 6.2.3 | Selection of evaluation of min/max. value | 6 | | | | | 6.3 | | menu - OUTPUT | | | | | | | 6.3.1 | Setting data logging | | | | | | | 6.3.2 | Setting Limits | | | | | | | | Setting data output. | | | | | | | 6.3.4 | Selection of display projection. | | | | | | | | menu - SERVICE | 0 | | | | | 6.4 | 6.4.1 | Selection of programming menu "LIGHT"/"PROFI" | 7 | | | | | | 6.4.2 | Restoration manufacture setting | | | | | | | 6.4.3 | Calibration - input range (DU) | | | | | | | 6.4.4 | Selection of instrument menu language version. | | | | | | | 6.4.5 | Setting new access password | | | | | | | 6.4.6 | Instrument identification | | | | | 7. | Settin | na items | into "USER" menu | | | | | <i>'</i> . | 7.0 | | ration "USER" menu | | | | | | | | | | | | | 8. | | | easuring of the cold junction | | | | | | 9. Data protocol | | | | | | | 10. | | | | | | | | 12. | Table of symbols | | | | | | | 12. | | | | | | | | 13. | | | | | | | | 14. | · · · · · · · · · · · · · · · · · · · | | | | | | | | Declo | aration o | f conformity | . 8 | | | ### 2.1 Description The OM 402 model series are 4 digit panel programmable instruments designed for maximum efficiency and user comfort while maintaining their favourable price. Two models are available: UNI and PWR. Type OM 402UNI is a multifunction instrument with the option of configuration for 7 various input options, easily configurable in the instrument menu. By further options of input modules it is feasible to measure larger ranges of DC voltage and current or increase the number of inputs up to 4 (applies for PM). The instrument is based on an 8-bit microcontroller with a multichannel 24-bit sigma-delta converter, which secures high accuracy, stability and easy operation of the instrument. #### The OM 402 is a multifunction instrument available in following types and ranges type UNI DC: 0...60/150/300/1200 mV PM: 0...5 mA/0...20 mA/4...20 mA/±2 V/±5 V/±10 V/±40 V **ΟΗΜ:** 0...100 Ω/0...1 kΩ/0...10 kΩ/0...100 kΩ RTD-Pt: Pt 50/100/Pt 500/Pt 1 000 RTD-Cu: Cu 50/Cu 100 RTD-Ni: Ni 1 000/Ni 10 000 T/C: J/K/T/E/B/S/R/N DU: Linear potentiometer (min. 500 Ω) type UNI, option A DC: 0...1 A/0...5 A/120 V/±250 V/±500 V type UNI, option B (expansion by 3 more inputs) PM: 3x 0...5 mA/0...20 mA/4...20 mA/±2 V/±5 V/±10 V/±40 V #### **PROGRAMMABLE PROJECTION** Selection: of type of input and measuring range Measuring range: adjustable as fixed or with automatic change Setting: manual, optional projection on the display may be set in the menu for both limit values of the input signal, e.g. input 0...20 mA > 0...850,0 -9999...9999 (-99999...999999) COMPENSATION Projection: of conduct: in the menu it is possible to perform compensation for 2-wire connection of conduct in probe: internal connection (conduct resistance in measuring head) of CJC (T/C): manual or automatic, in the menu it is possible to perform selection of the type of thermocouple and compensation of cold junctions, which is adjustable or automatic (temperature at the brackets) LINEARIZATION Linearization: * by linear interpolation in 50 points (solely via OM Link) **DIGITAL FILTERS** Exponen.average: from 2...100 measurements Rounding: setting the projection step for display MATHEMATIC FUCTIONS Min/max. value: registration of min./max. value reached during measurement Tare: designed to reset display upon non-zero input signal Peak value: the display shows only max. or min. value Mat. operations: polynome, 1/x, logarithm, exponential, power, root, sin x #### EXTERNAL CONTROL Lock: control keys blocking Hold: display/instrument blocking Tare: tare activation/resetting tare to zero Resetting MM: resetting min/max value Memory: data storage into instrument memory ## 2.2 Operation The instrument is set and controlled by five control keys located on the front panel. All programmable settings of the instrument are performed in three adjusting modes: LIGHT Simple programming menu - contains solely items necessary for instrument setting and is protected by optional number code PROFI Complete programming menu - contains complete instrument menu and is protected by optional number code USER User programming menu - may contain arbitrary items selected from the programming menu (LIGHT/PROFI), which determine the right (see or change) - acces without password All programmable parameters are stored in the EEPROM memory (they hold even after the instrument is switched off). (OMLINK) Complete instrument operation and setting may be performed via OM Link communication interface, which is a standard equipment of all instruments. The operation program is freely accessible (www.orbit.merret.cz) and the only requirement is the purchase of OML cable to connect the instrument to PC. It is manufactured in version RS 232 and USB and is compatible with all ORBIT MERRET instruments. Another option for connection is with the aid of data output RS 232 or RS 485 (without the need of the OML cable). The program OM LINK in "Basic" version will enable you to connect one instrument with the option of visualization and archiving in PC. The OM Link "Standard" version has no limitation of the number of instruments connected. ## 2.3 Options Excitation is suitable for supplying power to sensors and transmitters. It has a galvanic separation. Comparators are assigned to monitor one, two, three or four limit values with relay output. The user may select limits regime: LIMIT/DOSING/FROM-TO. The limits have adjustable hysteresis within the full range of the display as well as selectable delay of the switch-on in the range of 0...99,9 s. Reaching the preset limits is signalled by LED and simultaneously by the switch-on of the relevant relay. Data outputs are for their rate and accuracy suitable for transmission of the measured data for further projection or directly into the control systems. We offer an isolated RS232 and RS485 with the ASCII or DIN MessBus protocol. **Analog outputs** will find their place in applications where further evaluating or processing of measured data is required in external devices. We offer universal analog output with the option of selection of the type of output - voltage/current. The value of analog output corresponds with the displayed data and its type and range are selectable in Menu. Measured data record is an internal time control of data collection. It is suitable where it is necessary to register measured values. Two modes may be used. FAST is designed for fast storage (40 records/s) of all measured values up to 8 000 records. Second mode is RTC, where data record is governed by Real Time with data storage in a selected time segment and cycle. Up to 250 000 values may be stored in the instrument memory. Data transmis sion into PC via serial interface RS232/485 and OM Link. ## INSTRUMENT CONNECTION The instrument supply leads should not be in proximity of the incoming low-potential signals. Contactors, motors with larger input power should not be in proximity of the instrument. The leads into the instrument input (measured quantity) should be in sufficient distance from all power
leads and appliances. Provided this cannot be secured it is necessary to use shielded leads with connection to ground (bracket E). The instruments are tested in compliance with standards for use in industrial area, yet we recommend to abide by the above mentioned principles. #### **MEASURING RANGES** | Туре | Input I | Input U | |--------|---|-----------------| | DC | 060/150/300/1 200 mV | | | PM | 05/20 mA/420 mA | ±2/±5/±10/±40 V | | ОНМ | $00,1/1/10/100~k\Omega/Autorange$ | | | RTD-Pt | Pt 100/Pt 500/ Pt 1 000 | | | RTD-Cu | Cu 50/100 | | | RTD-Ni | Ni 1 000/10 000 | | | T/C | J/K/T/E/B/S/R/N | | | DU | Linear potentiometer (min. 500 Ω) | | #### **OPTION "A"** | Туре | Input I | Input U | |------|--|---------------------------------| | DC | ±0,1 A/±0,25 A/±0,5 A to GND (C)
±2 A/±5 A to GND (B) | ±100 V/±250 V/±500 V to GND (C) | #### **OPTION "B"** | Туре | Input 2, 3, 4/I | Input 2, 3, 4/U | |------|-----------------|-----------------| | PM | 05/20 mA/420 mA | ±2/±5/±10/±40 V | Excitation has the minus pole common with the input - the bracket no. 20 - GND and you may set its value by trimmer above the bracket no. 17 - · For expert users - · Complete instrument menu - · Access is password protected - Possibility to arrange items of the "User" menu - · Tree menu structure - For trained users - · Only items necessary for instrument setting - · Access is password protected - Possibility to arrange items of the "User" menu - · Linear menu structure - · For user operation - · Menu items are set by the user (Profi/Light) as per request - · Access is not password protected - · Optional menu structure either tree (PROFI) or linear (LIGHT) ## 4.1 Setting The instrument is set and controlled by five control keys located on the front panel. All programmable settings of the instrument are performed in three adjusting modes: LIGHT Simple programming menu - contains solely items necessary for instrument setting and is protected by optional number code PROFI Complete programming menu - contains complete instrument menu and is protected by optional number code USER User programming menu - may contain arbitrary items selected from the programming menu (LIGHT/PROFI), which determine the right (see or change) - acces without password All programmable parameters are stored in the EEPROM memory (they hold even after the instrument is switched off). Complete instrument operation and setting may be performed via OM Link communication interface, which is a standard equipment of all instruments. The operation program is freely accessible (www.orbit.merret.cz) and the only requirement is the purchase of OML cable to connect the instrument to PC. It is manufactured in version RS 232 and USB and is compatible with all ORBIT MERRET instruments. Another option for connection is with the aid of data output RS 232 or RS 485 (without the need of the OML cable). #### Scheme of processing the measured signal ## **INSTRUMENT SETTING** Setting and controlling the instrument is performed by means of 5 control keys located on the front panel. With the aid of these keys it is possible to browse through the operation menu and to select and set required values. #### Symbols used in the instructions DC PM DU OHM RTD T/C Indicates the setting for given type of instrument values preset from manufacture symbol indicates a flashing light (symbol) inverted triangle indicates the item that can be placed in USER menu EQUECT broken line indicates a dynamic item, i.e. it is displayed only in particular selection/version after pressing the key the set value will not be stored after pressing the key the set value will be stored and processing the key the convenee with be distret #### Setting the decimal point and the minus sign continues on page 30 #### **DECIMAL POINT** ୍ରା 30 Its selection in the menu, upon modification of the number to be adjusted it is performed by the control key 🕔 with transition beyond the highest decade, when the decimal point starts flashing. Positioning is performed by 🔷/🔾. #### THE MINUS SIGN Setting the minus sign is performed by the key \bigcirc on higher decade. When editing the item substraction must be made from the current number (e.g.: 013 > \bigcirc , on class 100 > .87) | Control keys fu | unctions | | | |---------------------|-------------------------------|--|------------------------------| | Key | Measurement | Menu | Setting numbers/selection | | • | access into USER menu | exit menu | quit editing | | 0 | programmable key function | back to previous level | move to higher decade | | | programmable key function | move to previous item | move down | | 0 | programmable key function | move to next item | move up | | Θ | programmable key function | confirm selection | confirm setting/selection | | 0+0 | | | numeric value is set to zero | | ⊕ + ⊖ | access into LIGHT/PROFI menu | | | | © + © | direct access into PROFI menu | | | | ⊖+⊖ | | configuration of an item for "USER" menu | | | ⊖ + ⊙ | | determine the sequence of items in "USER - LIGHT" menu | | ## Setting items into "USER" menu in LIGHT or PROFI menu *знои* - no items permitted in USER menu from manufacture - on items marked by inverted triangle item will not be displayed in USER menu 725 item will be displayed in USER menu with the option of setting item will be solely displayed in USER menu "LIGHT" Setting ## LIGHT #### Simple programming menu - contains only items necessary for instrument setting and is protected by optional number code - For capable users - · Only items necessary for instrument - · Access is password protected - · Possibility to arrange items of the "User" menu - · Linear menu structure ## Preset from manufacture Password "0" LIGHT Menu off USER menu Setting the items Œ #### 6.0 Setting "PROFI" #### **PROFI** Complete programming menu - · contains complete instrument menu and is protected by optional number code - · designed for expert users - · preset from manufacture is menu LIGHT - For expert users - Complete instrument menu - · Access is password protected - · Possibility to arrange items of the "User" menu - Tree menu structure #### Switching over to "PROFI" menu - temporary switch-over to PROFI menu, which is suitable to edit a few items - · after quitting PROFI menu the instrument automatically switches to LIGHT menu - access is password protected (if it was not set under item N. PASS. =0) - · access into LIGHT menu and transition to item "MENU" with subsequent selection of "PROFI" and confirmation - · after re-entering the menu the PROFI type is active - access is password protected (if it was not set under item N. PASS. =0) ### 6.1 Setting "PROFI" - INPUT The primary instrument parameters are set in this menu Resetting internal CLERR values Selection of measuring CONFIG. range and parameters Setting date and time for RTC option with RTC Setting external inputs EXT. IN. functions Assigning further x E 7 5 functions to keys on the instrument ### 6.1.1 Resetting internal values CLERR Resetting internal values CL. TRR. Tare resetting CL. MM. Resetting min/max value - resetting memory for the storage of minimum and maximum value achieved during measurement - Resetting the instrument memory - resetting memory with data measured in the "FAST" or "RTC" modes - not in standard equipment ### 6.1.2a Selection of measuring rate | RER\$./5 | Selection of measuring rate | |-------------|-----------------------------| | 40.0 | 40,0 measurements/s | | 20.0 | 20,0 measurements/s | | 10.0 | 10,0 measurements/s | | 5.0 | 5,0 measurements/s | | 2.0 | 2,0 measurements/s | | 1.0 | 1,0 measurement/s | | 0.5 | 0,5 measurements/s | | 0.2 | 0,2 measurements/s | | G. 1 | 0,1 measurements/s | # 6.1.2b Selection of "instrument" type | TYPE | Selection of "instrument" type | | |---|-----------------------------------|--| | selection of particular type of "instrument" is bound to relevant dynamic items | | | | <i>₽ €</i> | DC voltmeter | | | Pi1 | Process monitor | | | 0HM | Ohmmeter | | | PT\$-PŁ | Thermometer for Pt xxx | | | RT\$-N2 | Thermometer for Ni xxxx | | | TE | Thermometer pro thermocouples | | | ₽ U | Display for linear potentiometers | | | RTI-Eu | Thermometer for Cu xxx | | Upon delay exceeding 60 s the programming mode is automatically discontinued and the instrument itself restores the measuring mode # 6.1.2c Selection of measuring range | * | | | | | |---|-----------|------------|---------|------------| | ⊙ ⊖ → | | DC | ОНМ | -0 | | © 9 → O INPUTS CLEAR | RERL/5 | 50ml' | 100 R | DEF | | EHRNNE. CONFIG. | TYPE | 150ml' | 1 k | | | מעדפעד. רזכ | 1101 E | 300ml' | 10 k | | | SERVIC. EXT. IN. | CONECT. | 1200m1 | 100 k | | | #EYS | C.J. TEM. | | RUTO | | | | Rt. RES. | | | | | F | ER:5 | | | | | L | | DC - A | PM | | | | | 100 t | 0-5mR | | | | _ | 250 ¥ | 0-20mR | | | | DEF | 500 i' | 4-20mR | DEF | | | | 0.10 R | 0-2 v | | | ! | | 0.25 R | 0-5 V | | | Switching in the mode AUTO - "OHM" | | 0.50 R | 0-10 t | | | 0.1 > 1 k 0.101 k
1 k > 10 k 1.010 k | | 1.00 R | 0-40 r | | | 10 k > 100 k 10.10 k | | 5.00 A | | | | 100 > 10 k 9.900 k
10 k > 1 k 0.990 k | | | | | | 1 k > 0.1 k $0.099 k$ | | RTD-Pt | RTD-Cu | (TE) | | When selecting the "AUTO" range, the | DEF | EU- 100 | 428-50 | DEF | | items "MIN", "MAX", "P. TAR. A" will
not be displayed in the "CHAN. A" | | EU-500 | 428-0.1 | | | setting | | EU-110 | 426-50 | | | | | U5-100 | 426-0.1 | | | | | RU-50 | | | | | | RU- 100 | T/C | | | | | RTD-Ni | T/E E | | | | DEF | 5.0-11 | T/E J | | | | | 5.2-1k | T/C # | D H | | | | 5.0 - 10 k | | | | | | 6.2-10 k | T/E N | | | | | | T/E R | | | † | C | DU | T/C 5 | | | • |
DEF | LIN.POT. | T/E T | | | | MUFE | measuring range | |--------|--------------------|--| | | | | | | Menu | Measuring range | | | 60 mV | ±60 mV | | 2 | 150 mV | ±150 mV | | | 300 mV | ±300 mV | | | 1200mV | ±1,2 V | | | 100 V | ±100 V | | | 250 V | ±250 V | | | 500 V | ±500 V | | ٩ | 0.10 A | ±0,1 A | | 2 | 0.25 A | ±0,25 A | | | 0.50 A | ±0,5 A | | | 1.00 A | ±1 A | | | 5.00 A | ±5 A | | | Menu | Measuring range | | | 0-5mA | 05 mA | | | 0-20mA | 020 mA | | _ | 4-20mA | 420 mA | | ₽ | 0-2 V | ±2 V | | | 0-5 V | ±5 V | | | 0-10 V | ±10 V | | | 0-40 V | ±40 V | | | Menu | Measuring range | | | 100 R | 0100 Ω | | ₹ | 1 k | 01 kΩ | | OHW | 10 k | 010 kΩ | | | 100 k | 0100 kΩ | | | AUTO | Automatická změna rozsahu | | | Menu | Measuring range | | | EU-100
EU-500 | Pt 100 (3 850 ppm/°C) | | RTD-P | EU-300 | Pt 500 (3 850 ppm/°C) Pt 1000 (3 850 ppm/°C) | | Z. | US-100 | Pt 100 (3 920 ppm/°C) | | | RU-50 | Pt 50 (3 910 ppm/°C) | | | RU-100 | Pt 100 (3 910 ppm/°C) | | | Menu | Measuring range | | Ï | 5.0-1k | Ni 1 000 (5 000 ppm/°C) | | RTD-N | 6.2-1k | Ni 1 000 (6 180 ppm/°C) | | - | 5.0-10k
6.2-10k | Ni 10 000 (5 000 ppm/°C)
Ni 10 000 (6 180 ppm/°C) | | | Menu | Measuring range | | 3 | 428-50 | Cu 50 (4 280 ppm/°C) | | RTD-Cu | 428-0.1 | Cu 1 00 (4 280 ppm/°C) | | 22 | 426-50 | Cu 50 (4 260 ppm/°C) | | | 426-0.1
Menu | Cu 100 (4 260 ppm/°C) Type of thermocouple | | | T/C B | В | | | T/C E | E | | Ų | T/C J | J | | - | T/C K
T/C N | K
N | | | T/C R | R | | | T/C S | S | | | T/C T | T | Selection of instrument RTD ОНМ T/C For thermocoule type "B" the items CONECT. and C.J. TEM. are not available Method and procedure of setting the cold junctions is described in separate chapter on page 76 # SETTING T/C E.J. TEH. Setting temperature of cold junction - range 0...99°C with compensation box ### 6.1.2f Compensation of 2-wire conduct RTD OHM Rt. RES. Offset of the beginning of the measuring range in cases when it is necessary to offset the beginning of the range by certain value, e.g. while using sensor in measuring head - entered directly in Ohm (0...9999) - **DEF** = 0 ### 6.1.2g Compensation of 2-wire conduct RTD OHM # LERt 5 Compensation of 2-wire conduct - for measurement accuracy it is necessary to perform compensation of conduct always in case of 2-wire connection - prior confirmation of the displayed prompt "YES" it is necessary to substitute the sensor at the end of the conduct by a short-circuit - **DEF** = 0 #### 6.1.3 Setting the real time clock #### 6.1.4a External input function selection # SETTING #### 6.1.4b Selection of function "HOLD" #### Selection of function M. HOLE "HOLD" "HOLD" locks only the £ T 5 P L value displayed "HOLD" locks the value £15.+80. displayed and on AO "HOLD" locks the value 1.+RO.+L displayed, on AO and limit evaluation "HOLD" locks the entire RLL instrument ### 6.1.5a Optional accessory functions of the keys Setting is identical for LEFT, DOWN, UP and ENTER | FN. LE | Assigning further functions to instrument | |--------|---| | | | - ...FN. LE." > executive functions - "TMP. LE." > temporary projection of selected values - "MNU. LE." > direct access into menu on selected item Key has no further function Resetting EL. M.M. min/max value CL. TRR. Tare resetting MENU Direct access into menu after confirmation of this selection the "MNU. LE." item is displayed on superior menu level, where required selection is performed TEMP. V. Temporary projection of selected values after confirmation of this selection the item "TMP. LE." is displayed on superior menu level, whererequired selection is performed TARE Tare function activation THE IE Temporary projection of #### 6.1.5b Optional accessory functions of the keys - Temporary projection | IIIF. LL. | selected item | | | |--|---|--|--| | - "Temporary" projection of selected value is displayed for the time of keystroke - "Temporary" projection may be switched to permanent by pressing © + "Selected key", this holds until the stroke of any key | | | | | NO | Temporary projection is off | | | | ЕНЯМ, Я | Temporary projection of "Channel A" value | | | | FIL. R | Temporary projection of
"Channel A" value after
gital filters | | | | MRT. FN. | Temporary projection of
"Mathematic functions" | | | | MIN | Temporary projection of "Min. value" | | | | MAX | Temporary projection of "Max. value" | | | | LIM I | Temporary projection of "Limit 1" value | | | | LIM 2 | Temporary projection of "Limit 2" value | | | | LIM. 3 | Temporary projection of "Limit 3" value | | | | LIM. 4 | Temporary projection of "Limit 4" value | | | | TIME | Temporary projection of "TIME" value | | | | \$RTE | Temporary projection of "DATE" value | | | | TRRE | Temporary projection of "TARE" value | | | | P. TRRE | Temporary projection of
"P. TARE" value | | | | COLI. J. | Temporary projection of "CJC" value | | | | ! | | | | | Setting is identical | Setting is identical for LEFT, DOWN, UP and ENTER | | | # 6.1.5c Optional accessory functions of the keys - Direct access to item ### 6.2 Setting "PROFI" - CHANNELS The primary instrument parameters are set in this menu CHRN, R Setting parameters of measuring "Channel" Setting parameters of mathematic functions MINMRX Selection of access and evaluation of Min/ max value 6.2.1c Digital filters #### Selection of digital 1101, F.R filters - at times it is useful for better user projection of data on display to modify it mathematically and properly, wherefore the following filters may be used: NO Filters are off RVER. Measured data average - arithmetic average from given number ("CON.F. A.") of measured values - range 2...100 ELORT. Selection of floating filter - floating arithmetic average from given number ("CON.F. A.") of measured data and updates with each measured value - range 2...30 - Selection of exponential EXPON. - integration filter of first prvního grade with time constant ("CON.F. A.") measurement - range 2...100 ROUND Measured value rounding - is entered by any number, which determines the projection step (e.g: "CON.F. A."=2,5 > display 0, 2.5, 5,...) CON. F. R. Setting constants - this menu item is always displayed after selection of particular type of filter - \Box = 2 # SETTING ### 6.2.1d Projection format - positioning of decimal point # 6.2.1e Projection of description - the measuring units # Setting projection of descript, for "Channel A" - projection of mesured data may be extended (at the expense of the number of displayed places) by two characters for description - description is set by shifted ASCII code, when two first places show the set description and two last characters their code in period 0...95 - description is cancelled by code 00 - RTD T/C DEF = °C - DC PM DU OHM DE =none Table of signs on page 81 # Selection of storing data into instrument memory ### 6.2.2a Mathematic functions Mathematic functions are off POLIN Polynome $$Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F$$ 1/x $\frac{A}{x^5} + \frac{B}{x^4} + \frac{C}{x^3} + \frac{D}{x^2} + \frac{E}{x} + F$ LOGRA Logarithm $$A \times \ln \left(\frac{Bx + C}{Dx + E} \right) + F$$ Exponential $$A \times e^{\left(\frac{Bx+C}{Dx+E}\right)} + F$$ POUER Power $$A \times (Bx + C)^{(Dx+E)} + F$$ 5IN # Sin x $A\sin^5 x + B\sin^4 x + C\sin^3 x + D\sin^2 x$ $+ E \sin x + F$ Setting constants for calculation of mat. - this menu is displayed only after selection of given mathematic function #### 6.2.2b Mathematic functions - decimal point #### 6.2.2c Mathematic functions - measuring units #### 6.2.2d Mathematic functions - selection of storing data into instrument memory Selection of storing data SRVE M into instrument memory - by selection in this item you allow to register values into instrument memory - another setting in item "OUTPUT. > MEMORY" (not in standard experiment) Measured data are YE5 NO stored in the memory Measured data are not stored ### Selection of evaluation of min/max value Selection of evaluation of min/max value - selection of value from which the min/ max value will be calculated Evaluation of min/max NO value is off From "Channel A" CHRN. R From "Channel A" after FIL.R digital filters processing From "Mathematic MRT. EN. functions" # 6.3 Setting "PROFI" - OUTPUTS In this menu it is possible to set parame ters of the instrument output signals MEMBRY Setting data logging into memory LIMITS Setting type and parameters of limits Setting type and parameters of data output Setting type and parameters of analog output Setting type and parameters of analog output Setting display projection and brightness 6.3.1a Selection of mode of data logging into instrument memory Selection of the mode of data logging - selection of the mode in the event of full instrument memory Rewriting values prohibited YE5 Rewriting values permitted, the oldest get rewritten by the latest # 5.3.1b Setting data logging into instrument memory - RTC STRRT Start of data logging into instrument memory - time format HH.MM.SS STOP Stop data logging into instrument memory time format HH.MM.SS PERIOS. Period of data logging into instrument memory - determines the period in which values will be logged in an interval delimited by the time set under items START and STOP - time format HH.MM.SS - records are made on a daily basis in selected interval and period - item not displayed if "STORE" is selected in menu (Input > EXT. IN.) ### Setting data logging into instrument memory - FAST # TRIGER Setting logging data into inst. memory - logging data into inst. memory is governed by the folowing selection, which determines how many percent of the memory is reserved for data logging prior to initiation of trigger
impulse - initiation is on ext. input or control key 10% Reser. of 10 % memory prior init. of data logging 50% Reser. of 50 % memory prior init. of data logging 90% Reser. of 90 % memory prior init. of data logging After initiation of data logging the memory is cyclically transcribed # SETTING ### 6.3.2a Selection of input for limits evaluation Selection evaluation of limits - selection of value from which the limit will be evaluated Limit evaluation is EHRN. R Limit evaluation from FIL. R Limit evaluation from "Channel A" after digital filters processing MRT. FN. Limit evaluation from "Mathematic functions" MIN Limit evaluation from "Min.value" MR: Limit evaluation from "Max.value" # 6.3.2b Selection of type of limit Setting is identical for LIM 2. LIM 3 and LIM 4 Selection the type of limit Limit is in mode "Limit, hysteresis, delay" - for this mode the parameters of "LIM. L." are set, at which the limit will shall react, "HYS. L." the hysteresis range around the limit (LIM $\pm 1/2$ HYS) and time "TIM. L." determining the delay of relay switch-on FROM. Frame limit for this mode the parameters are set for interval "ON. L." the relay switch-on and "OFF. L." the relay switch-off Dose limit (periodic) for this mode the parameters are set for "PER. L." determining the limit value as well as its multiples at which the output is active and "TIM. L." indicating the time during which is the output active i Setting is identical for LIM 2, LIM 3 and LIM 4 #### 6.3.2c Selection of type of output #### Setting values for limits evaluation 6.3.2d ### 6.3.3a Selection of data output baud rate Selection of data output ខកប៖ baud rate Rate - 600 Baud 600 Rate - 1 200 Baud 1200 Rate - 2 400 Baud 2400 Rate - 4 800 Baud 4800 Rate - 9 600 Baud 9600 Rate - 19 200 Baud 19200 Rate - 38 400 Baud 38400 Rate - 57 600 Baud 57600 Rate - 115 200 Baud 115200 Rate - 230 400 Baud 230400 # 6.3.3b Setting instrument address ### 6.3.3c Selection of data output protocol ### 6.3.4a Selection of input for analog output | INP. RO. | Selection evaluation analog output | | |---|--|--| | - selection of value from which the analog output will be evaluated | | | | NO | AO evaluation is off | | | EHRN, R | AO evaluation
from "Channel A" | | | FIL. R digital filters p | AO evaluation
from "Channel A" after
rocessing | | | MRT, FN. | AO evaluation from "Math.functions" | | | MIM | AO evaluation from "Min.value" | | | MAX | AO evaluation
from "Max.value" | | # 6.3.4b Selection of the type of analog output Selection of the type of TYP AN analog output Type - 0...20 mA 0-20mR Type - 4...20 mA E 4-20 - with indication of error statement (< 3,0 mA) Type - 4...20 mA 4-20.08 Type - 0...5 mA 0-5mR Type - 0...2 V 0-21 Type - 0...5 V 0-51 Type - 0...10 V 0-101 # 6.3.4c Setting the analog output range ### RN. DUT. Setting the analog output range analog output is isolated and its value corresponds with displayed data. It is fully programmable, i.e. it allows to assign the AO limit points to two arbitrary points of the entire measuring range MIN R.O. Assigning the display value to the beginning of the AO range - range of the setting is -99999...999999 - **DEF** = 0 MA# A.O. Assigning the display value to the end of the AO ranae - range of the setting is -99999...999999 - DEF = 100 #### 6.3.5a Selection of input for display projection #### Selection display PERM. projection - selection of value which will be shown on the instrument display Projection of values CHRN, R from "Channel A" Projection of values FIL.R from "Channel A" after digital filters processing Projection of values MRT, FN. from "Math.functions" Projection of values from MIN. "Min.value" Projection of values MRX from "Max.value" #### 6.3.5b Selection of display brightness | Selection of display brightness | | | |--|--|--| | by selecting display brightness we may
appropriately react to light conditions in
place of instrument location | | | | Display is off | | | | - after keystroke display turns on for 10 s | | | | Display brightness - 25 % | | | | Display brightness - 50% | | | | 75" Display brightness - 75% | | | | Display brightness - 100% | | | ### 6.4 Setting "PROFI" - SERVIS The instrument service functions are set in this menu Selection of menu type LIGHT/PROFI RESTOR. Restore instrument manufacture setting and Input range calibration for "DU" version LANG. Language version of instrument menu N. PR55. Setting new access password INENT. Instrument identification # 6.4.1 Selection of type of programming menu Selection of menu type -LIGHT/PROFI enables setting the menu complexity according to user needs and skills LIGHT Active LIGHT menu - simple programming menu, contains only items necessary for configuration and instrument setting - linear menu > items one after another PROFI Active PROFI menu - complete programming menu for expert - tree menu ! Change of setting is valid upon next access into menu 6.4.2 Restoration of manufacture setting | Library francis | Restore | | | |---|-------------|---------|--| | Jobs performed | Calibration | Setting | | | cancels USER menu rights | ✓ | ✓ | | | deletes table of items order in USER - LIGHT menu | ✓ | ✓ | | | adds items from manufcture to LIGHT menu | ✓ | ✓ | | | deletes data stored in FLASH | ✓ | ✓ | | | cancels or linearization tables | ✓ | ✓ | | | clears tare | ✓ | ✓ | | | clears conduct resistances | ✓ | ✓ | | | restore manufacture calibration | ✓ | × | | | restore manufacture setting | × | ✓ | | RESTOR. Restoration of manufacture settina - in the event of error setting or calibration, manufacture setting may be restored. CALIE. Restoration of manufacture calibration of the instrument - prior executing the changes you will be asked to confirm you selection "YES" NASTAV Restoration of instrument manufacture setting TYPE Restoration of instrument manufacture setting - generating the manufacture setting for currently selected type of instrument (items marked DEF) USER Restoration of instrument user setting - generating the instrument user setting, i.e. setting stored under SERVIC./RESTOR./ SAVE SRVE Save instrument user settina - storing the user setting allows the operator to restore it in future if needed After restoration the instrument switches off for couple seconds #### 6.4.3 Calibration - Input range DU #### Input range CRLIE calibration - when "C. MIN" is displayed, move the potentiometer traveller to the required minimum position and confirm by "Enter", calibration is confirmed by "YES" - when "C. MAX" is displayed, move the potentiometer traveller to required maximum position and confirm by "Enter", calibration is confirmed by "YES" #### Selection of instrument menu language version 6.4.4 #### Selection of instrument LANG. menu language version Instrument menu is in CZECH Czech ENGL. Instrument menu is in English #### 6.4.5 Setting new access password #### Setting new password N PRSS for access to LIGHT and PROFI menu - this selection enables changing number code that blocks the access into LIGHT and PROFI Menu. - range of the number code is 0...9999 - universal password in the event of loss is "8177" 6.4.6 Instrument identification IFENT. Projection of instrument SW version - display shows type identification of the instrument, SW number, SW version and current input setting (Mode) - if the SW version reads a letter on first position, it is a customer SW #### 7.0 Setting items into "USER" menu - . USER menu is designed for users who need to change only several items of the setting without the option to change the primary instrument setting (e.g. repeated change of limit setting) - · there are no items from manufacture permitted in USER menu - on items indicated by inverse triangle - · setting may be performed in LIGHT or PROFI menu, with the USER menu then overtaking the given menu structure - For user operation - Menu items are set by the user (Profi/Light) as per request - · Access is not password protected # Setting NO item will not be displayed in USER menu YE5 item will be displayed in USER menu with editing option SHON item will be solely displayed in USER menu # Setting sequence of items in "USER" menu In compiling USER menu from active LIGHT menu the items (max. 10) may be assigned a sequence, in which they will be projected in the menu settina projection sequence # Example: Into USER menu were selected these items (keys ⊇ + △) > CL. TAR., LIM 1, LIM 2, LIM 3, for which we have preset this sequence (keys ⊇ + □): CL. TAR. LIM 1 O (sequence not determined) LIM₂ LIM 3 Upon entering USER menu Instrument with input for temperature measurement with thermocouple allows to set two types of measurement of cold junction. Reference thermocouple #### WITH REFERENCE THERMOCOUPLE - a reference thermocouple may be located in the same place as the measuring instrument or in place with stable temperature/compensation box - when measuring with reference thermocouple set EDNET, in the instrument menu to INTETE or EXTETE - when using a thermostat (a compensation box or environment with constant temperature) set in the instrument menu EUE.TETL its temperature (applies for setting EBITEET, to EXTETS) - if the reference thermocouple is located in the same environment as the measuring instrument then set in the instrument menu EQNEET, to INTETE. Based on this selection the measurement of the ambient temperatureis performed by a sensor located in the instrument terminal board. #### WITHOUT REFERENCE THERMOCOUPLE - inaccuracy originating from the creation of dissimilar thermocouples on the transition point terminal/conductor of the thermocouple is not compensated for in the instrument - when measuring without reference thermocouple set EDNEE Lin the instrument menu
to INTLITE or EXILITE - when measuring temperature without reference thermocouple the error in measured data may be as much as 10°C (applies for setting EDNEE T. to E # T. ITE) # DATA PROTOCOL The instruments communicate via serial line RS232 or RS485. For communication they use the ASCII protocol. Communication runs in the following format: ASCII: 8 bit, no parity, one stop bit DIN MessBus: 7 bit, even parity, one stop bit The transfer rate is adjustable in the instrument menu. The instrument address is set in the instrument menu in the range of 0 ÷ 31. The manufacture setting always presets the ASCII protocol, rate of 9600 Baud, address 00. The type of line used - RS232 / RS485 - is determined by an output board automatically identified by the instrument. The commands are described in specifications you can find at na www.orbit.merret.cz/rs or in the OM Link program. ## **DETAILED DESCRIPTION OF COMMUNICATION VIA SERIAL LINE** | Event | Туре | Pro | tocol | Transmit | ted data | | | | | | | | | | | | |---|------|------------------|--------|--------------------------------------|-------------|-----|-----------|-----------|-----|-----|-----|-----|-------------|-------------|-------------|-------------| | | 7 | А | SCII | # | А | А | <cr></cr> | | | | | | | | | | | D | 23 | Ме | ssBus | No - data is transmitted permanently | | | | | | | | | | | | | | Data solicitation (PC) | 485 | А | SCII | # | А | А | <cr></cr> | | | | | | | | | | | | 48 | Ме | ssBus | <sadr></sadr> | <enq></enq> | | | | | | | | | | | | | Data transmission (instrument) | 232 | А | SCII | > | D | (D) <cr></cr> | | | | 23 | Me | ssBus | <sadr></sadr> | D | (D) <etx></etx> | <bcc></bcc> | | | 485 | А | SCII | > | D | (D) <cr></cr> | | | | 48 | Me | ssBus | <sadr></sadr> | D | (D) <etx></etx> | <bcc></bcc> | | Confirmation of data acceptannce
(PC) - OK | | | | <dle></dle> | 1 | | | | | | | | | | | | | Confirmation of data acceptance
(PC) - Bad | 185 | | D | <nak></nak> | | | | | | | | | | | | | | Sending address (PC) prior command | 4 | MessBus | | <eadr></eadr> | <enq></enq> | | | | | | | | | | | | | Confirmation of address (instrument) | İ | | | <sadr></sadr> | <enq></enq> | | | | | | | | | | | | | Command transmission (PC) | 2 | Α | SCII | # | А | А | N | Р | (D) <cr></cr> | | | 232 | MessBus | | <stx></stx> | \$ | N | Р | (D) | (D) | (D) | (D) | (D) | <etx></etx> | <bcc></bcc> | | | | | -5 | ASCII
MessBus | | # | А | А | N | Р | (D) <cr></cr> | | | 48, | | | <sadr></sadr> | \$ | N | Р | (D) | (D) | (D) | (D) | (D) | <etx></etx> | <bcc></bcc> | | | | Command confirmation (instrument) | | ASCII | OK | Į. | Α | Α | <cr></cr> | | | | | | | | | | | | 232 | ASi | Bad | ŝ | А | Α | <cr></cr> | | | | | | | | | | | | | Messbus | | No - data is transmitted permanently | | | | | | | | | | | | | | | | = | OK | į. | А | Α | <cr></cr> | | | | | | | | | | | | 485 | ASCII | Bad | ŝ | Α | А | <cr></cr> | | | | | | | | | | | | 84 | MessBus | ОК | <dle></dle> | 1 | | | | | | | | | | | | | | | Mes | Bad | <nak></nak> | | | | | | | | | | | | | | Command confirmation (inst.) - OK | 485 | | ssBus | - ! | Α | Α | <cr></cr> | | | | | | | | | | | Command confirmati (instrument) - Bad | 4 | IVIE | issbus | Ś | А | Α | <cr></cr> | | | | | | | | | | | Instrument identification | | | | # | А | Α | 1Y | <cr></cr> | | | | | | | | | | HW identification | | | | # | А | Α | 1Z | <cr></cr> | | | | | | | | | | One-time transmission | | | | # | А | Α | 7X | <cr></cr> | | | | | | | | | | Repeated transmission | | | | # | А | Α | 8X | <cr></cr> | | | | | | | | | ## LEGEND | # | 35 | 23 _H | Command beginning | |---------------|-------------------|------------------------------------|---| | A A | 031 | | Two characters of instrument address (sent in ASCII - tens and units, e.g. "01", "99" universal | | <cr></cr> | 13 | OD _H | Carriage return | | <sp></sp> | 32 | 20 _H | Space | | N, P | | | Number and command - command code | | D | | | Data - usually characters "0""9", "-",
"."; (D) - dp. and (-) may prolong data | | R | 30 _H . | 3F _H | Relay and tare status | | Į. | 33 | 21 _H | Positive confirmation of command (ok) | | ś | 63 | 3F _H | Negative confirmation of command (point) | | > | 62 | 3E _H | Beginning of transmitted data | | <stx></stx> | 2 | 02 _H | Beginning of text | | <etx></etx> | 3 | 03 _H | End of text | | <sadr></sadr> | addres | a +60 _H | Prompt to send from address | | <eadr></eadr> | addres | a +40 _H | Prompt to accept command at address | | <enq></enq> | 5 | 05 _H | Terminate address | | <dle>1</dle> | 16
49 | 10 _H
31 _H | Confirm correct statement | | <nak></nak> | 21 | 15 _H | Confirm error statement | | <bcc></bcc> | | | Check sum -XOR | # **RELAY, TARE** | Sign | Relay 1 | Relay 2 | Tare | Change
relay 3/4 | |------|---------|---------|------|---------------------| | Р | 0 | 0 | 0 | 0 | | Q | 1 | 0 | 0 | 0 | | R | 0 | 1 | 0 | 0 | | S | 1 | 1 | 0 | 0 | | T | 0 | 0 | 1 | 0 | | U | 1 | 0 | 1 | 0 | | ٧ | 0 | 1 | 1 | 0 | | W | 1 | 1 | 1 | 0 | | р | 0 | 0 | 0 | 1 | | q | 1 | 0 | 0 | 1 | | r | 0 | 1 | 0 | 1 | | s | 1 | 1 | 0 | 1 | | t | 0 | 0 | 1 | 1 | | U | 1 | 0 | 1 | 1 | | ٧ | 0 | 1 | 1 | 1 | | w | 1 | 1 | 1 | 1 | Relay status is generated by command #AA6X <CR>. The instrument immediately returns the value in the format >HH <CR>, where HH is value in HEX format and range 00_H...FF_H. The lowest bit stands for "Relay 1", the highest for "Relay 8" | ERROR | CAUSE | ELIMINATION | |-----------|---|--| | E. F. U a | Number is too small (large negative) to be displayed | change DP setting, channel constant setting | | E. F. Or. | Number is too large to be displayed | change DP setting, channel constant setting | | E. T. U a | Number is outside the table range | increase table values, change input setting (channel constant setting) | | E. T. □*. | Number is outside the table range | increase table values, change input setting (channel constant setting) | | E. I. U a | Input quantity is smaller than permitted input quantity range | change input signal value or input (range) setting | | E. I. O. | Input quantity is larger than permitted input quantity range | change input signal value or input (range) setting | | Е. НЦ | A part of the instrument does not work properly | send the instrument for repair | | ε. εε | Data in EEPROM corrupted | perform restoration of manufacture setting, upon repeated error statement send instrument for repair | | E. I ATA | Data in EEPROM outside the range | perform restoration of manufacture setting, upon repeated error statement send instrument for repair | | E. ELR. | Memory was empty
(presetting carried out) | upon repeated error statement send instrument for repair, possible failure in calibration | The instrument allows to add two descriptive characters to the classic numeric formats (at the expense of the number of displayed places). The setting is performed by means of a shifted ASCII code. Upon modification the first two places display the entered characters and the last two places the code of the relevant symbol from 0 to 95. Numeric value of given character equals the sum of the numbers on both axes of the table. Description is cancelled by entering characters with code 00 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----|------------|----|---------------|----|----|----|--------------|---------|----|---|---|----|---|----|---|---|---| | 0 | | 7. | " | Ħ | 5 | 34 | ď | , | 0 | | ļ | ıı | # | \$ | % | & | 1 | | 8 | 1 |) | * | + | , | | | ,' | 8 | (|) | * | + | , | - | | / | | 16 | 0 | 1 | 2 | 3 | ч | 5 | 8 | 7 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 24 | 8 | 9 | 17 | // | (| } | | 7. | 24 | 8 | 9 | : | ; | < | = | > | ś | | 32 | 0 | R | \mathcal{E} | Ε | £ | Ε | F | 5 | 32 | @ | Α | В | С | D | Ε | F | G | | 40 | Н | I | J | " | L | 11 | N | <i></i> | 40 | Н | I | J | Κ | L | М | Ν | 0 | | 48 | ρ | G | R | 5 | T | Ц | <i>l</i> , ' | 11 | 48 | Р | Q | R | S | T | U | ٧ | W | | 56 | <i></i> // | Y | 7 | Ε | ١, | J | Ω | - | 56 | Χ | Υ | Z | [| \ |] | ^ | _ | | 64 | 1 | a | ь | c | ď | e. | F | 5 | 64 | ` | а | b | С | d | е | f | g | | 72 | h | 2 | J | k | 1 | m | n | 0 | 72 | h | i | i | k | - | m | n | 0 | | 80 | ρ | a | r | ı | ٤ | u | V | Þ4 | 80 | р | q | r | s | t | U | ٧ | W | | 88 | <i></i> // | Y | L | -(| 1 | }- | О | | 88 | х | у | z | { | | } | ~ | | | INPUT | | | 1 | | | DU | |-----------------------|-----------------------|--|---------|---|--|-----------| | range is adjustbale | | | DC | Voltage of lin. pot. | 2,5 VDC/6 mA | | | runge is aujusibule | ±60 mV | >100 M0hm | Input U | 3 | min. potentiometer resistance is 500 Ohm | | | | ±150 mV | >100 MOhm | Input U | | | | | | ±300 mV | >100 M0hm | Input U | PROJECTION | | | | | ±1200 mV | >100 M0hm | Input U | Display: | 999999, intensive red or green | | | | | | . | | 14-ti segment LED, digit height 14 mm | | | range is adjustbale | | DC - opi | ion "A" | Projection: | ±9999 (-99999999999) | | | | ±0,1 A | < 300 mV | Input I | Decimal point: | adjustable - in menu | | | | ±0,25 A | < 300 mV | Input I | Brightness: | adjustbale - in menu | | | | ±0,5 A | < 300 mV | Input I | | | | | | ±1 A | < 30 mV | Input I | INSTRUMENT ACC | CURACY | | | | ±5 A | < 150 mV | Input I | TC: | 100 ppm/°C | | | | ±100 V | 20 MOhm | Input U | Accuracy: | ±0,1% of range + 1 digit | | | | ±250 V | 20 MOhm | Input U | , | | D, T/C | | | ±500 V | 20 MOhm | Input U | | ±0,3 % of range + 1 digit | PWR | | range is adjustbale | | | PM | | Above accuracies apply for projection 9999 | | |
range is aujosibale | 0/420 mA | < 400 mV | Input I | Resolution: | 0,01°/0,1°/1° | RTD | | | ±2 V | 1 MOhm | Input U | Rate: | 0,140 measurements/s** | | | | ±5 V | 1 MOhm | Input U | Overload capacity: | 10x (t < 100 ms) not for 400 V and 5 A, | | | | ±10 V | 1 MOhm | Input U | , | 2x (long-term) | | | | ±40 V | 1 MOhm | Input U | Linearisation: | by linear interpolation in 50 points | | | | | | | | - solely via OM Link | | | range is adjustbale | 0 100 01 | | ОНМ | Digital filters: | Averaging, Floating average, Exponential filter, Ro | unding | | | 0100 Ohm | | | Comp. of conduct: | max. 40 Ohm/100 Ohm | RTD | | | 01 k0hm
010 k0hm | | | Comp. of cold junct.: | | T/C | | | 010 kUnm
0100 kOhm | | | | 0°99°C or automatic | | | | Autorange | | | Functions: | Tare - display resetting | | | Connection: | 2, 3 or 4 wire | | | | Hold - stop measuring (at contact) | | | connection. | 2,00111110 | | | | Lock - control key locking | | | | | | RTD | | MM - min/max value | | | Pt xxxx | -200°850°C | | | 04111 | Mathematic functions | | | Pt xxxx/3910 ppm | -200°1 100°C | | | OM Link: | company communication interface for setting, and update of instrument SW | operation | | Ni xxxx | -50°250°C | | | Watch-dog: | reset after 400 ms | | | Cu/4260 ppm | -50°200°C | | | Calibration: | at 25°C and 40 % of r.h. | | | Cu/4280 ppm | -200°200°C | | . | Cumprumon. | ui 25 Cuilu 40 % oi i.ii. | | | Type Pt: | US > 100/500/1 00 | 00 Ohm, with 3 850 ppm/°(
. 3 920 ppm/°C | | COMPARATOR | | | | | RU > 50/100 Ohm, | | | Type: | digital, adjustable in menu | | | Type Ni: | | wiii 5 710 ppiii/ C
) with 5 000/6 180 ppm/°C | | Mode: | Hysteresis, From, Dosing | | | Type Cu: | | 4 260/4 280 ppm/°C | | Limita: | -99999999999 | | | Connection: | 2, 3 or 4 wire | 7 200/ 7 200 ppill/ C | | Hysteresis: | 0999999 | | | | • | | | Delay: | 099,9 s | | | range is adjustbale i | n configuration menu | | T/C | Outputs: | 2x relays with switch-on contact (Form A) | | | Туре: | J (Fe-CuNi) | -200°900°C | | 001,00131 | (230 VAC/30 VDC, 3 A)* | | | | K (NiCr-Ni) | -200°1 300°C | | | 2x relays with switch-off contact (Form C) | | | | T (Cu-CuNi) | -200°400°C | | | (230 VAC/50 VDC, 3 A)* | | | | E (NiCr-CuNi) | -200°690°C | | | 2x SSR (250 VAC/ 1 A)* | | | | B (PtRh30-PtRh6) | 300°1 820°C | | | 2x/4x open collector (30 VDC/100 mA) | | | | S (PtRh10-Pt) | -50°1 760°C | | | 2x bistabil relays (250 VAC/250 VDC, 3 A/0,3 A) | t | | | R (Pt13Rh-Pt) | -50°1 740°C | | Relay: | 1/8 HP 277 VAC, 1/10 HP 125 V, Pilot Duty D300 | | | | N (Omegalloy) | -200°1 300°C | | | * values apply for resist | anco load | # **DATA OUTPUTS** Protocols: ASCII, DIN MessBus, MODBUS, PROBUS Data format: 8 bit + no parity + 1 stop bit (ASCII) 7 bit + even parity + 1 stop bit (MessBus) Rate: 600...230 400 Baud RS 232: isolated, two-way communication RS 485: isolated, two-way communication, addressing (max. 31 instruments) PROFIBUS Data protocol SIEMENS #### **ANALOGO OUTPUTS** Type: isolated, programmable with resolution of max.10 000 points, analog output corresponds with displayed data, type and range are adjustable Non-linearity: 0.2 % of range TC: 100 ppm/°C Rate: response to change of value < 150 ms Voltage: 0...2 V/5 V/10 V Curernt: 0...5/20 mA/4...20 mA - compensation of conduct to 500 Ohm/12 V or 1 000 0hm/24 V #### MEASURED DATA RECORD Type RTC: time-controlled logging of measured data into instrument memory, allows to log up to 250 000 values Type FAST: fast data logging into instrument memory, allows to log up to 8 000 values at a rate of 40 records/s Transmission: via data output RS 232/485 or via OM Link ## EXCITATION Adjustbale: 5...24 VDC/max. 1.2 W. isolated #### POWER SUPPLY Options: 10...30 V AC/DC, 10 VA, isolated, - fuse inside (T 4000 mA) 80...250 V AC/DC, 10 VA, isolated - fuse inside (T 630 mA) #### MECHANIC PROPERTIES Material: NorvI GFN2 SE1, incombustible UL 94 V-I Dimensions: 96 x 48 x 120 mm Panel cut-out: 90,5 x 45 mm #### OPERATING CONDITIONS Connection: connector terminal board, conductor cross-section <1,5 mm 2 /<2,5 mm 2 Stabilisation period: within 15 minutes after switch-on Working temp: 0° 60°C Working temp.: 0°...60°C Storage temp.: -10°...85°C Cover: IP65 (front panel only) Construction: safety class I Overvoltage category: EN 61010-1, A2 Insulation resistance: for pollution degree II, measurement category III instrum.power supply > 670 V (PI), 300 V (DI) Input/output > 300 V (PI), 150 (DI) EMC: EN 61000-3-2+A12: EN 61000-4-2, 3, 4, 5, 8, 11: EN 550222. A1. A2 ^{**}Table of rate of measurement in relation to number of inputs | Channels/Rate | 40 | 20 | 10 | 5 | 2 | 1 | 0,5 | 0,2 | 0,1 | |--|-------|-------|-------|------|------|------|------|------|------| | No.of channels: 1
(Type: DC, PM, DU) | 40,00 | 20,00 | 10,00 | 5,00 | 2,00 | 1,00 | 0,50 | 0,20 | 0,10 | | No.of channels: 2 | 5,00 | 2,50 | 1,25 | 1,00 | 0,62 | 0,38 | 0,22 | 0,09 | 0,05 | | No.of channels: 3 | 3,33 | 1,66 | 0,83 | 0,66 | 0,42 | 0,26 | 0,14 | 0,06 | 0,03 | | No.of channels: 4 | 2,50 | 1,25 | 0,62 | 0,50 | 0,31 | 0,19 | 0,11 | 0,05 | 0,02 | | No.of channels: 1
(Type: OHM, RTD, T/C) | 5,00 | 2,50 | 1,25 | 1,00 | 0,62 | 0,38 | 0,22 | 0,09 | 0,05 | | No.of channels: 2 | 3,33 | 1,066 | 0,83 | 0,66 | 0,42 | 0,26 | 0,14 | 0,06 | 0,03 | | No.of channels: 3 | 2,50 | 1,25 | 0,62 | 0,50 | 0,31 | 0,19 | 0,11 | 0,05 | 0,02 | | No.of channels: 4 | 2,00 | 1,00 | 0,50 | 0,40 | 0,25 | 0,15 | 0,08 | 0,04 | 0,02 | #### Front view #### Panel cut ### Side view Panel thickness: 0.5...20 mm ## Instrument installation - 1. insert the instrument into the panel cut-out - 2. fit both travellers on the box - 3. press the travellers close to the panel # Instrument disassembly - 1. slide a screw driver under the traveller wing - 2. turn the screw driver and remove the traveller - 3. take the instrument out of the panel | Product | OM 402UNI | Α | В | |--|--|-------|---| | Туре | | | | | Manufacturing No. | | | | | Date of sale | JAF | | | | | | | he user applies to this instrument.
or or due to material faults shall be eliminated free of charge. | | For quality, function and constr
and used in compliance with th | uction of the instrument to
be instructions for use. | the g | uarantee shall apply provided that the instrument was connected | | The guarantee shall not apply | to defects caused by: | | | | - unavoidable e
- other unprofe | f unqualified person inc
event
ssional interventions | | | | The manufacturer performs gud | arantee and post.guara | ntee | repairs unless provided for otherwise. | | | | Sto | amp, signature | # DECLARATION OF CONFORMITY Company: ORBIT MERRET, spol. s r.o. Klánova 81/141, 142 00 Prague 4, Czech Republic, IDNo: 00551309 Manufactured: ORBIT MERRET, spol. s r.o. Vodňanská 675/30, 198 00 Prague 9, Czech Republic declares at its full responsibility that the product presented hereunder meets all technical requirements, is safe for use when utilised under the terms and conditions determined by ORBIT MERRET, spol.s.r.o. and that our company has taken all measures to ensure conformity of all products of the type listed hereunder, which are being brought out to the market, with technical documentation and requirements of the appurtenant statutory orders. **Product:** 4-digit programmable panel instrument Type: OM 402 Version: UNI, PWR Conformity is assessed pursuant to the following standards: El. safety: EN 61010-1 EMC: EN 50131-1, chapter 14 and chapter 15 EN 50130-4, chapter 7 EN 50130-4, chapter 8 EN 50130-4, chapter 9 EN 50130-4, chapter 10 EN 50130-4, chapter 11 EN 50130-4, chapter 12 EN 50130-4, chapter 12 EN 50130-4. chapter 13 EN 61000-4-5 EN 61000-4-5 EN 61000-4-5 EN 50130-5, chapter 20 prEN 50131-2-1, par. 9.3.1 EN 61000-4-8 EN 61000-4-9 EN 61000-3-2 ed. 2:2001 EN 61000-3-3: 1997, Cor. 1:1998, Z1:2002 EN 55022, chapter 5 and chapter 6 and Ordinance on: El. safety: No. 168/1997 Coll. EMC: No. 169/1997 Coll. The evidence are the protocols of authorized and accredited organizations: VTÚE Praha, experimental laboratory No. 1158, accredited by ČIA VTÚPV Vyškov, experimental laboratory No. 1103, accredited by ČIA Place and date of issue: Prague, 18. March 2006 Miroslav Hackl v.r. Company representative Mode of asses. of conformity §12, par. 4 b, d Act No. 22/1997 Coll.