

Description SPI Serial Protocol for RSC/RFC digital

1 Electrical Characteristics

The serial protocol of the RSC/RFC is a three wires protocol (/SS, SCLK, MOSI-MISO). The RSC/RFC is considered as a slave mode:

- /SS pin is a 5V tolerant digital input
- SCLK pin is a 5V tolerant digital input
- MOSI-MISO pin is a 5V tolerant open drain digital input/output

Application type	µCtrl supply (V)	Pull-up supply (V)	sensor supply (V)	R1 (Ω)	R2 (Ω)	R3 (kΩ)	R4 (Ω)	R5 (kΩ)	MOS type
5VµCtrl w/o O.D. w/o 3.3V	5V	5V	5V	100	1000	20	1000	20	BS 170
5VµCtrl w/o O.D. w 3.3V	5V	3,3V	5V	150	1000	N/A	1000	20	BS 170
3,3VµCtrl w/o O.D. (*1)	3,3V	3,3V	5V	150	1000	N/A	N/A	N/A	BS 170
5VµCtrl w O.D. w/o 3.3V(*2)	5V	5V	5V	100	1000	20	1000	20	N/A
3,3VµCtrl w O.D.	3,3V	3,3V	5V	150	1000	N/A	N/A	N/A	N/A

Table 3: Resistor values for common specific applications

*1 µCtrl w/ O.D.: Micro controller with open-drain capability (for example NEC V850 series)

*2 µCtrl w/o O.D.: Micro controller without open-drain capability (like TI TMS320 series or AMTEL AVR)

2 SPI Mode

CPHA = 1 even clock changes are used to sample the data CPOL = 0 active high clock The positive going edge shifts a bit to the slave's output stage and the

negative going edge samples the bit at the master's input stage.

3 MOSI (Master OUT Slave IN)

The master sends a command to the slave to get the angle information.

4 MISO (Master In Slave Out)

The MISO of the slave is an open-collector stage. Due to the capacitive load a > 1k Ohm pull-up is used for the recessive high level (in fast and slow mode).

5 /SS Slave Select

The /SS pin enables a frame transfer (if CPHA = 1). It allows a resynchronisation between Slave and Master in case of communication error.

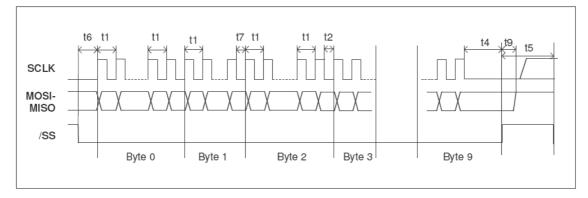
6 Master Start-up

/SS, SCLK, MISO can be undefined during the Master start-up as long as the slave is re-synchronized before the first frame transfer.

7 Slave Start-up

The slave start-up (after power-up, or an internal failure) takes 16ms. Within this time /SS and SCLK is ignored by the slave. The first frame can therefore be sent after 16ms.

MISO is high-impedant until the slave is selected by its /SS input. RSC/RFC will cope with any signal from the master while starting up.


8 Timing

To synchronize communication, the master deactivates /SS high for at least t5 (1,5ms).

In this case, the slave will be ready to receive a new frame.

The master can re-synchronize at any time, even in the middle of a byte transfer.

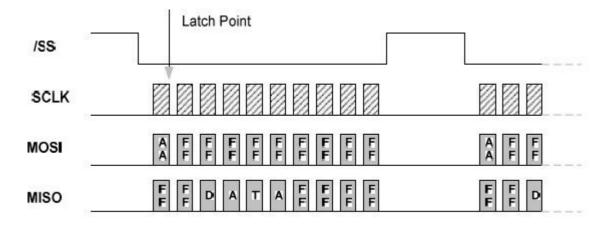
<u>Note:</u> Any time shorter than t5 leads to an undefined frame state, because slave may or may not have seen /SS inactive.

Timings	Min (15)	Мах	Remarks
t1	2.3µs/6.9µs	-	No capacitve load on MISO. t1 is the minimum clock period for any bits within a byte
t2	12.5µs / 37.5µs	-	t2 is the minimum time between any other byte
t4	2.3µs / 6.9µs	-	Time between last clock and /SS=hi and= chip de selection
t5	300µs / 1500µs	-	Minimum /SS = Hi time where it is guaranteed that a frame recroniza- tions will be started.
t5	0µs	-	Minimum /SS = Hi time where it is guaranteed that NO frame recroniza- tions will be started.
t6	2.3µs/6.9µs	-	The time t6 defines the minimum time between /SS=Lo and the first clock edge.
t7	15µs/45µs	-	t7 is the minimum time between the start byte and byte 0
t8	0µs	-	Minimum time where SS is deactivat- ed between a ID byte and a start byte
t9	-	<1µs	Maximum time between /SS=Hi and MISO Bus High-Impedance
T start up	-	<10ms / 16ms	Minimum time between reset-inactive and any master signal change

(15) Timings shown for oscillator base frequency of 20 MHz (fast mode) / 7 MHz (slow mode)

9 Slave Reset

On internal soft failures the slave will reset after 1 sec, or after an (error) frame is sent.


On internal hard failures the slave will reset itself. In that case the serial protocol will not come up. The serial protocol link is enable only after the completion of the first synchronisation (the master deactivates /SS for at least t5).

10 Frame Layer

Before each transmission of a data frame, the master should send a byte AAh to enable a frame transfer.

The latch point for the angle measurement is at the last clock of the first data frame byte.

Timing diagram - dual slave communication

11 Data Frame Structure

A data frame consists of 10 bytes

- 2 start bytes (AAh followed by FFh)
- 2 data bytes (Data 16 most significant byte first)
- 2 inverted data bytes (/Data16 most significant byte first)
- 4 all-high bytes

The Master should send AAh followed by nine bytes FFh.

The slave will answer with two bytes FFh followed by four data bytes and four bytes FFh.

12 Timing

There are no timing limits for frames: a frame transmission could be initiated at any time. There is no inter-frame time defined.

13 Data Structure

The Data16 could be a valid angle, or an error condition. The two meanings are distinguished by the LSB

Data 16: Angle A[13:0] with (Angle Span) /2^14

	Most Significant Byte							Less Significant Byte							
MSB							LSB	MSB							LSB
A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	0	1

Data 16: Error

	Most Significant Byte							Less Significant Byte							
MSB		LS						MSB							LSB
E15	E14 E13 E12 E11 E10 E9				E8	E7	E6	E5	E4	E3	E2	E1	E0		

BIT	NAME	
E0	0	
E1	1	
E2	F_ADCMONITOR	ADC Failure
E3	F_ADCSATURA	ADC Saturation (Electrical failure or field too strong)
	F_RGTOOLOW	Analog gain below trimmed threshold
E4		(likely reason: field too weak
E5	F_MAGTOOLOW	Magnetic field too weak
E6	F_MAGTOOHIGH	Magnetic field too strong
	F_RGTOOHIGH	Analog gain above trimmed threshold
E7		(likely reason: field too strong
E8	F_FGCLAMP	Never occuring in serial protocol
E9	F_ROCLAMP	Analog chain rough offset compensation:clipping
E10	F_MT7V	Device supply VDD greater than 7V
E11	-	
E12	-	
E13	-	
E14	F_DACMONITOR	Never occuring in serial protocol
E15	-	

14 Angle Calculation

All communication timing is independent (asynchronous) of the angle data processing.

The angle is calculated continuously by the slave:

- Slow Mode of RSC/RFC: every 1,5ms at most
- Fast Mode of RSC/RFC: every 350µs at most

The last angle calculated is hold to be read by the master at any time. <u>Note:</u> Only valid angles are transferred by the slave, because any internal failure of the slave will lead to a soft reset.

15 Error Handling

In case of any errors listed in section 13, the serial protocol will be initialized and the error condition can be read by the master. The slave will perform a soft reset once the error frame is sent.

In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error,...) the slave's serial protocol is not initialized. The MOSI/MISO pin will stay high impedant (no error frame is sent).